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Abstract— Humans typically avert their gaze when faced with
situations involving another person’s privacy, and humanoid
robots should exhibit similar behaviors. Various approaches
exist for privacy recognition, including an image privacy recog-
nition model and a Large Vision-Language Model (LVLM). The
former relies on datasets of labeled images, which raise ethical
concerns, while the latter requires more time to recognize
images accurately, making real-time responses difficult. To this
end, we propose a method of automatically constructing the
LLM Privacy Text Dataset (LPT Dataset), a privacy-related text
dataset with privacy indicators, and a method of recognizing
whether observing a scene violates privacy without ethically
sensitive training images. In constructing the LPT Dataset,
which consists of both private and public scenes, we use an
LLM to define privacy indicators and generate texts scored for
each indicator. Our model recognizes whether a given image
is private or public by retrieving texts with privacy scores
similar to the image in a multi-modal feature space. In our
experiments, we evaluated the performance of our model on
three image privacy datasets and a realistic experiment with a
humanoid robot in terms of accuracy and responsibility. The
experiments show that our approach identifies the private image
as accurately as the highly tuned LVLM without delay.

I. INTRODUCTION

Recent advancements in interactive humanoid robots are
becoming increasingly integrated into our daily lives. De-
signed with human-like features, these robots are expected
to exhibit natural, human-like behaviors, including consid-
eration of the privacy of others. When confronted with
privacy-sensitive situations, such as when someone changes
clothes or enters a password, humans instinctively avert their
gaze. Likewise, humanoid robots must demonstrate privacy
awareness by responding appropriately in real time. Our
preliminary survey (see Section III) indicates that individuals
experience discomfort when being observed by robots in
such contexts. For this purpose the robots are required to
identify whether the image captured by the camera contains
content that may infringe privacy without delay.
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Fig. 1. Our methodology for recognizing a private image consists of
two phases: 1) the automatic construction of a privacy-related text dataset
with multiple privacy indicators, the LPT Dataset, and 2) image privacy
recognition that uses texts through a two-stage image-text retrieval process.
We integrate the proposed method with robots to realize a look-away action
(b) in situations where it might violate an individual’s privacy.

The primary approach to privacy recognition involves the
development of image privacy recognition models [1]–[7].
Conventional methods develop these models with labeled
image datasets [7]–[9]. However, the collection and annota-
tion of private images raises significant ethical concerns that
cannot be overlooked. A promising alternative is to leverage
a Large Vision-Language Model (LVLM), which facilitates
zero-shot recognition by leveraging extensive image-text pair
datasets, eliminating the need for direct training on private
images. However, this approach often involves complex rea-
soning processes, which leads to substantial computational
costs that render it unsuitable for real-time applications.

To enable a robot to perform privacy-aware behavior
with low latency, we achieve image privacy recognition
without relying on ethically sensitive images. Specifically,
we fully utilize a Large Language Model (LLM) and a
Vision-Language Model (VLM) and propose a methodology
consisting of two phases: 1) the automatic construction of the
LLM Privacy Text Dataset (LPT Dataset) and 2) the image
privacy recognition model based solely on textual data. An
overview of this study is shown in Figure 1. In the first phase,
we use an LLM to generate textual descriptions related to
privacy, each scored from 0 to 10 across multiple privacy
indicators (e.g., “norms” and “reputation”). In the second
phase, our model predicts the privacy score of an input
image, representing how private an image (or a text) context
is, through a two-stage text retrieval process that references
multiple sentences rather than just one to improve robustness.
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In the first stage, it retrieves texts from the LPT Dataset that
are similar to the image in the vision language feature space
and estimates the scores for each indicator. In the second
stage, these scores are used to retrieve similar texts, and the
privacy score is computed from their overall scores.

For evaluation, we assess the performance of the recogni-
tion model based on the LPT Dataset and the privacy-aware
behavior of the robot equipped with the recognition model.
The performance of the model is tested on PrivacyAlert [9],
VISPR [7], and the CommU Privacy Image Dataset (CPI
Dataset), which contains human action images captured by
the robot. Finally, we conduct a user study with 20 subjects
to evaluate the model’s effectiveness in real-world scenarios.

The contributions of this study are summarized as follows:
• We propose a method that enables humanoid robots

to recognize privacy-sensitive situations and respond
appropriately.

• We introduce a low-latency and robust approach to
image privacy recognition using only automatically
generated privacy-labeled text, eliminating the need for
ethically sensitive image datasets.

II. RELATED WORK
This study proposes an approach to image privacy recog-

nition without using ethically sensitive images. Our approach
leverages a VLM and a text dataset automatically generated
by an LLM, allowing interactive humanoid robots to exhibit
privacy-aware behaviors. To position our work in the broader
research landscape, we review relevant studies on human-
robot interaction, image privacy recognition, and advances
in foundation models such as LLMs or LVLMs.

A. AI for Human-Aware Robotics
As robots increasingly interact with humans, natural com-

munication has become essential [10]. Technologies such
as cloud computing and computer vision enable robots to
recognize gestures and improve interaction [11], [12]. In
addition, natural language processing and speech recognition
enhance verbal communication, while reinforcement learning
supports autonomous navigation and task execution [13].

To achieve more natural interactions, robots that can adjust
gaze, nod, or blink in response to conversation cues have
been developed [14]. Advanced systems integrate image
recognition with LLMs to interpret group conversations and
provide context-aware support, such as serving drinks [15].
These developments enhance the social acceptability and
usability of humanoid robots.

Despite these advances, data-driven approaches raise ethi-
cal concerns, particularly regarding privacy and bias [16]. AI
models trained on human-generated data introduce the risks
of surveillance and unintended privacy violations. Ensuring
privacy-aware behavior in humanoid robots is essential for
their ethical deployment.

B. Image Privacy Recognition
The notion of privacy is ambiguous, and the criteria for its

violation vary across jurisdictions. However, in most coun-
tries, capturing images with a camera is widely recognized as

an act that raises concerns about potential privacy violations.
For example, “information collection” is one category in
Solove’s taxonomy of actions that pose risks to privacy [17].
Furthermore, in Japan, unauthorized photography has been
recognized as a potential infringement of privacy, even in
cases related to Google Street View, when it encroaches on an
individual’s private life (Google Street View Case, Fukuoka
High Court Judgment, 13 July 2012, Japan).

Existing image privacy recognition methods classify im-
ages as private or public based on labeled datasets [18].
Notable examples of such datasets include PicAlert [8],
which annotates images from Flickr, and VISPR [7], which
categorizes images using privacy attributes derived from legal
regulations. PrivacyAlert [9] refines VISPR with recent social
media data, while cross-cultural studies highlight differences
in privacy perception [19]. However, the collection of ethi-
cally sensitive images for these datasets raises concerns [20].

Earlier privacy recognition models relied on hand-crafted
features and text annotations [1]. More recent methods in-
corporate convolutional neural networks [2] and bidirectional
encoder representations from transformers for text-based fea-
ture extraction [3]. Some approaches integrate scene context
and object information [4], while others apply topic modeling
to improve interpretability [21]. More recently, the query
processing capabilities of LVLMs for images have improved,
enabling the exploration of methods for privacy awareness.
However, achieving high-accuracy recognition with LVLMs
requires approximately three seconds per image, making
them impractical for real-time applications.

C. Foundation Models

Foundation models (e.g., LLMs and LVLMs) can be
applied to general-purpose tasks using knowledge obtained
from vast amounts of training data and can generate highly
accurate responses even without a task-specific dataset.
LLMs are text generation models capable of producing
diverse sentences by varying the input, known as a “prompt.”
Prompt-based techniques such as in-context learning [22] and
Chain of Thought (CoT) [23] further enhance their ability
to generate text that aligns with user intent. Leveraging
this property, LLMs have been utilized for synthetic dataset
generation in specific domains [24], [25]. In this study, we
extend this approach to generate privacy-related textual data,
thereby eliminating the need for ethically sensitive image
datasets in privacy detection.

LVLMs, such as GPT-4, have been developed as multi-
modal generation models that extend LLMs to tasks such
as image captioning [26] and text-to-image generation [27].
Contrastive Language-Image Pretraining (CLIP) [28] is a
representative model of VLMs, achieving strong performance
in zero-shot classification by mapping images and texts into a
shared feature space using contrastive learning. This capabil-
ity allows CLIP to generalize across diverse vision-language
tasks without task-specific fine-tuning. Beyond general ap-
plications, CLIP has been explored for ethical assessments
of images. Jeong et al. [29] developed a model that identifies
immoral images without requiring direct training on new
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Fig. 2. Questionnaire results: Discomfort ratings for 10 types of actions and information were collected on a 5-point scale across three condi-
tions—photography, human gaze, and robotic observation—separately for male and female participants. Types marked in red are subject to a user study
with the robot in Section V-C.

datasets, while Park et al. [30] extended this approach to
detect and correct moral issues in AI-generated images.
Privacy-focused VLMs have also been proposed for visual
question answering tasks [20].

Most VLM-based approaches to image privacy recogni-
tion still rely on sensitive images that cannot be collected
and annotated in an ethical manner. Our study addresses
this limitation by leveraging VLMs to recognize the image
privacy solely on textual data, eliminating the need for direct
exposure to private images. Unlike previous work [29], we
do not train a classification model; instead, we estimate the
privacy score of an image using a memory-based approach.
In general, privacy recognition requires the ability to handle
detailed expressions in images and text, even in unknown
scenes. This often makes classification overly sensitive to
local samples near the boundary and outliers. In contrast,
the memory-based approach is more robust in such cases by
leveraging multiple examples that have been retrieved.

III. PRELIMINARY SURVEY ON ROBOT OBSERVATION

To enable a robot to properly perform privacy-aware
behavior according to a given situation, it is essential to
understand how uncomfortable people feel when their own
actions and personal information are observed by others. The
degree of discomfort depends on the context, the observer,
and the nature of the subject. However, this aspect has
not been well investigated so far. Thus, in this study, we
first conducted a survey through a crowdsourcing service.
Specifically, we asked 200 workers to rate their degree of
discomfort on a 5-point scale for 10 types of actions and
information across three types of observation: photography,
human gaze, and robots. In this survey, the specific form and
recognition mechanism of the robot were not provided.

As shown in Figure 2, photography was the most un-
comfortable observation type, while robot observation was
relatively less uncomfortable. However, in highly private
situations, such as changing clothes or viewing a smart-
phone screen, strong discomfort was also reported even
when observed by the robot. In addition, being observed by
robots tended to cause discomfort, particularly among female
participants.

These results clarify the impact of robot observation on
privacy perceptions and emphasize the need for context-
aware privacy considerations. This study examines scenarios,

such as changing clothes and viewing smartphone screens,
where discomfort was particularly high, to evaluate the
acceptability of the robot’s observational behavior.

IV. METHODOLOGY

In this study, we propose a robotic system capable of
behaving in a privacy-sensitive manner by leveraging an
ethically sound textual dataset. To this end, we construct
a comprehensive textual dataset and introduce a model that
classifies an image as private or public based solely on textual
descriptions, thereby eliminating the dependence on privacy-
sensitive visual data. The proposed dataset encompasses a di-
verse range of privacy-related scenarios while autonomously
defining privacy indicators. Furthermore, to ensure efficient
and robust recognition for practical applications, the pro-
posed model references multiple texts obtained through
two-stage image-text retrievals, where retrieval methods are
pretrained to effectively find neighbors in inference. For our
retrieval-based method, we employed k-Nearest Neighbors
(kNN) primarily for its efficiency in adding and removing
privacy-sensitive texts.

In this section, we explain three key components in our
methodology: the construction procedure of the LPT Dataset,
image-text retrieval-based image privacy recognition, and the
integration mechanism of the model into CommU.

A. Construction of the LLM Privacy Text Dataset

To recognize privacy-sensitive situations, the content must
include descriptions of private actions or objects. However,
constructing such a dataset manually is highly labor intensive
and poses significant challenges due to the inherent subjec-
tivity of privacy perceptions, which vary across individuals,
cultures, and temporal contexts. To address this issue, we
leverage an LLM to automatically generate the LPT Dataset,
an ethically sound textual dataset for privacy recognition.

Figure 3 illustrates the construction process of the LPT
Dataset. The LPT Dataset conceptualizes privacy based on
whether the subjects being observed or photographed ex-
perience discomfort, reflecting human sensitivity to privacy
intrusions. Since privacy concerns vary in both contextual
scope (e.g., sensitive personal data vs. bodily exposure) and
severity (e.g., yawning vs. changing clothes), we adopt a
graded privacy representation rather than a binary classifica-
tion. Each textual entry is assigned a privacy score ranging
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Fig. 3. Constructing the LPT Dataset: This process consists of two key
steps—automatically defining multiple privacy indicators and constructing
a text dataset that considers both private and public cases.

from 0 to 10 across multiple privacy indicators, encapsulating
different dimensions of privacy violations. These indicators
are dynamically adjusted to reflect contemporary privacy
perceptions inferred from the LLM’s training data. In order to
construct an excellent dataset, we implement three schemes
from the perspectives of reliability, diversity, and balance.

To enhance the dataset’s reliability, privacy indicators
undergo iterative refinement through clustering and aggre-
gation. Since a single generation cycle may introduce in-
consistencies, multiple iterations are conducted to ensure
that privacy attributes remain robust and well-defined. This
process enables the LLM to generate structured descriptions
of private and public scenarios, promoting dataset diversity
and ensuring adaptability to evolving privacy standards and
temporal variations.

Since repeated prompts we assign impose inherent token
limitations of LLMs, a prompt without any device may lead
to make a scenario bias and produce overly homogeneous
outputs. To maintain the diversity of scenarios, we employ a
multi-phase prompting strategy, where previously generated
text is used as conversational context. This strategy guides
the LLM to mitigate redundancy while preserving contextual
coherence, ensuring adaptability to evolving privacy stan-
dards and temporal variations.

Furthermore, to ensure dataset balance, we generate both
private and public content using distinct prompts. Since
specifying “public” often yields descriptions predominantly
focused on outdoor environments, we introduce two separate
prompts: indoor and outdoor. This distinction enhances the
diversity of public content, allowing privacy recognition
models to better distinguish various public contexts.

B. Training-free Image Privacy Recognition via Text

To realize an image privacy recognition model using only
textual data with privacy indicators, it is crucial to effectively
link the privacy context of a given image with private scenes
described in texts. To this end, we propose CLIP-driven Text-
based Image Privacy Recognition (CLIP-TIPR), a retrieval-
based image privacy recognition model that identifies texts
with privacy scores similar to the image in the CLIP’s
multi-modal feature space. Our model determines whether

an image is private through a two-stage retrieval process:
the first stage utilizes CLIP’s feature space, while the second
stage incorporates privacy indicators. If an LLM defines only
one indicator, our model performs only the first retrieval-
based on text features. We refer to our models as CLIP-TIPR
(indicator-based) and CLIP-TIPR (text-based), respectively.

In this paper, we adopt the regression based on vanilla
kNN for the two image-text retrievals. Here, we describe the
nearest neighbor search problem we aim to solve. Note that
kNN can reduce the computation time during inference by
adopting acceleration algorithms such as approximate nearest
neighbor search and kd-trees.

Let T = {T1,T2, . . . ,TN} be the set of all texts in the LPT
Dataset, as described in Section IV-A, and N be the total
number of texts. Each text Tn is associated with multiple
privacy indicators, which is represented by a vector sssn
summarizing their respective scores as follows:

sssn = (s1
n,s

2
n, . . . ,s

M
n ) (1)

where M represents the total number of privacy indicators,
and sm

n denotes the m-th privacy indicator score for text Tn.
The image encoder and text encoder in CLIP, mapping an
image I and a text T into a shared D-dimensional feature
space, are denoted as fI(I) and fT (T ), respectively.

In the first phase, the model retrieves texts from the LPT
Dataset similar to the input image in the multi-modal feature
space, and then computes the scores of the image from the
indicator scores assigned to the retrieved texts. The problem
of selecting the indices I of the kI texts that best match an
image I in CLIP’s feature space is formulated as follows:

II = argmin
I

∑
i∈I

d( fI(I), fT (Ti)) (2)

s.t. I ⊆ {1, . . . ,N}, |I |= kI

where d(·, ·) denotes the distance function.
Since each of the kI selected texts is associated with a

privacy indicator vector, their average serves as the predicted
indicator scores for the image I. The resulting predicted score
vector ŝss(I) is defined as follows:

ŝss(I) =
1
kI

∑
i∈II

sssi (3)

Similarly, the same procedure can be applied to the overall
score, yielding the predicted privacy score for the image I
given by:

ŝOA(I) =
1
kI

∑
i∈II

sOA
i (4)

Furthermore, we apply kNN again in the second stage to
obtain a privacy score from the indicator scores. Specifically,
we compute the distance between the predicted score vector
ŝss(I) and all score vectors {sss1,sss2, . . . ,sssN} in the text dataset.
The problem of selecting the indices J of the ksss texts that
best match an image I using indicator scores is as follows:

Jŝss(I) = argmin
J

∑
j∈J

d(ŝss(I),sss j) (5)

s.t. J ⊆ {1, . . . ,N}, |J |= ksss
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where d(·, ·) denotes the distance function.
Finally, the privacy score Ŝ(I) of the image I is computed

by averaging the overall scores assigned to texts as follows:

Ŝ(I) =
1
ksss

∑
j∈Jŝss(I)

sOA
j (6)

The proposed procedure allows a multi-dimensional and
stepwise evaluation of image privacy by referencing multiple
texts scored for each indicator similar to the image.

C. Integrating Image Privacy Recognition into Robots

In this section, we describe the integration of the image
privacy recognition method described in Section IV-B into
CommU (Vstone Co. Ltd.), a humanoid robot.

CommU captures environmental images using a forehead-
mounted camera and stores them as buffered images for
internal processing. These images are transmitted to a server
on the same network via socket communication, where they
are processed by an image privacy recognition function.
Due to the extremely limited computing power of CommU’s
embedded computer, this function runs on the server to
estimate the privacy score from the image.

If the computed privacy score exceeds a predefined thresh-
old, CommU mimics human behavior by considering the
gaze of others and performs a look-away action, as illustrated
in Figure 1(b). During this action, the camera temporarily
stops capturing images for a fixed duration (2 seconds) before
resuming image capture.

This reassessment process simulates the human tendency
to glance at the environment again in uncomfortable situ-
ations. During reassessment, CommU observes the environ-
ment with its arms raised and eyes half-open while gradually
returning its body orientation and posture to its original
position (Figure 1(c)). At this stage, CommU captures a
new image and transmits it to the server for re-evaluation,
following the same procedure as before. If the recomputed
privacy score still exceeds the threshold, CommU repeats
the look-away action. In contrast, if the score falls below
the threshold, CommU returns to its original posture (Fig-
ure 1(a)), indicating a reduction in privacy concerns.

On the server, the image privacy recognition function
operates continuously, receiving and processing images sent
from CommU in real time. To ensure real-time performance,
the model is preloaded into memory, allowing immediate in-
ference on incoming images. Through this process, CommU
detects privacy violations in its environment using the image
privacy recognition model, enabling it to exhibit behavior
that naturally considers human gaze and privacy awareness.

V. EXPERIMENTS

A. Building the LPT Dataset

We constructed the LPT Dataset following the procedure
described in Section IV-A, assigning scores ranging from 0
to 10 to multiple privacy indicators and their overall score. To
facilitate the comparative analysis of datasets, we constructed
a dataset scored from 0 to 10 based on a single abstract
privacy indicator: whether one would feel embarrassed if

TABLE I
DISTRIBUTION OF PRIVACY INDICATORS FOR GENERATED TEXTS

Generated Indicator Mean±Std
Emotional Privacy and Sensitivity 2.17±2.29
Physical Privacy and Vulnerability 0.87±1.55
Social Norms and Embarrassment 3.25±3.13
Confidentiality and Information Security 0.41±1.48
Reputation and Identity Concerns 1.84±2.12
Overall Score 3.39±2.83

seen or photographed by others. All datasets were generated
under the same conditions using GPT-4o as the LLM, with a
temperature of 0.9, a presence penalty of 0.0, and
a frequency penalty of 0.3.

In the construction of the LPT Dataset, the indicators and
their meanings generated are as follows:
Emotional Privacy and Sensitivity (EMO) Indicator of

emotional exposure or psychological burden.
Physical Privacy and Vulnerability (VULN) Indicator re-

lated to the state of physical unprotection or invasion of
physical privacy of an individual.

Confidentiality and Information Security (CONF) In-
dicator related to the risk of leakage of confidential
information, personal information, etc.

Social Norms and Embarrassment (NORMS) Indicator
of situations involving behavior or embarrassment that
deviate from social norms.

Reputation and Identity Concerns (REP) Indicator related
to the likelihood that an individual’s behavior or situation
will affect his or her reputation, identity, etc.

For simplicity, each indicator will hereafter be denoted by
its abbreviation in parentheses. Note that the overall score is
denoted as OA.

Table I shows the distribution of privacy indicators for
generated texts. The NORMS and OA have a wide range of
values, while the values for VULN and CONF tend to be
concentrated around 0.

Table II presents examples of generated text and its
privacy indicator scores in the LPT Dataset. The top example
“Having your pants accidentally torn in a very public place”
receives a score of 8 for VULN, 7 for REP, and 9 for
NORMS, with an overall score of 10. This suggests an
intuitive alignment between the sentence context and the
degree of privacy violation. In contrast, the bottom example
“Photographed yawning widely in a serious meeting” has a
NORMS score of 6 and an overall score of 6. Because this
situation may be perceived as a privacy violation in certain
contexts, its overall score is close to the boundary between
private and public, which appears reasonable.

B. Evaluation of Image Privacy Recognition

1) Dataset: To evaluate image privacy recognition, we
utilized the existing evaluation image datasets PrivacyAlert
and VISPR, as well as the newly constructed CommU Pri-
vacy Image Dataset (CPI Dataset). PrivacyAlert is a dataset
labeled with binary classifications (private or public) based
on the presence or absence of privacy-related elements.
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TABLE II
EXAMPLES OF LPT DATASET TEXT AND SCORES WHERE VALUES OF 6 OR HIGHER IN BOLD AND 8 OR HIGHER IN RED.

Text CONF EMO VULN REP NORMS OA

Having your pants accidentally torn in a very public place. 0 6 8 7 9 10
Having your phone sent a personal message to a group chat by mistake. 5 7 0 6 8 9
Photographed yawning widely in a serious meeting. 0 2 1 3 6 6

VISPR is a multi-label dataset that includes 67 types of
privacy-related elements along with a “safe” label, making
a total of 68 labels. In this study, we classified images as
private if they contained at least one privacy-related element,
while those labeled only as “safe” were categorized as public.

To evaluate the ability of robots to recognize privacy in
real-world environments, we constructed the CPI Dataset.
This dataset comprises images of human actions captured
by CommU in real-world settings. Based on the preliminary
survey described in Section III, we focused on actions that
were rated as particularly discomforting: changing clothes,
viewing PC or smartphone screens, and sloppy behavior
(e.g., yawning). Images were captured before, during, and
after these actions, and five annotators assessed whether they
contained information or actions that they would not want
others to see if they were in the same situation. The final
label was determined by majority vote, adopting a label if
at least four out of five annotators agreed. Additionally, we
ensured that the number of private and public images was
balanced for each action type to facilitate the interpretation of
recognition accuracy. The distribution of private/public im-
ages in each dataset is as follows: PrivacyAlert (489/1,281),
VISPR (4,967/3,000), and CPI Dataset (75/75).

2) Comparison Methods: To verify the effectiveness of
the proposed method, we conducted a comparison using two
datasets described in Section II-B. Specifically, we evaluated
the methods based on the LPT Dataset with multiple indi-
cators and a dataset with a single abstract indicator. Within
the LPT Dataset, we compared a text-based retrieval using
only the overall score indicator and each individual indica-
tor separately, as well as an indicator-based retrieval that
considers all multiple indicators. Furthermore, we explored
an approach utilizing an LVLM, GPT-4o mini, to classify
images as private or public. The LVLM-based methods
included LVLM-simple, which directly predicts labels, and
LVLM-cot, which first outputs the reasoning process before
determining the final label by using the CoT technique.

In addition, we conducted ablation studies on both the text-
based retrieval and the indicator-based retrieval. Specifically,
regarding the text-based retrieval, we compared our kNN-
based approach to one following Jeong et al. [29], which
trains a linear classifier based on the prompt type (pri-
vate/public) of the generated texts, referred to as ZSVCIP1 in
our experiment. Regarding the indicator-based retrieval, we
compared our classification method, which applies thresh-
olding based on overall, to voting based on prompt type.

1ZSVCIP does not work on the overall score of the LPT Dataset.
Therefore, we defined labels based on the prompt type instead.

For the proposed method, we utilized three CLIP models2.
We employed kNN for both image-text retrievals, with k = 7,
using Euclidean distance as the distance function, and set a
threshold of 5 on the privacy score ranging from 0 to 10 to
distinguish between private and public.

3) Evaluation Metrics: We used the macro F1-score as
an evaluation metric, averaging it across all CLIP models for
methods without LVLM. We also measured the processing
time on an M2 MacBook Air (Apple Inc.), which was used
for the actual implementation. For the proposed method,
we measured only the image recognition model’s processing
time, excluding image transfer. In contrast, for LVLM, the
processing time was measured from request to response,
including image transfer.

4) Results: Table III presents the evaluation results us-
ing the image dataset. In terms of accuracy, CLIP-TIPR
(indicator-based) consistently outperformed both the text-
based method trained with a single abstract indicator and
LVLM-simple across all datasets. Furthermore, CLIP-TIPR
(indicator-based) achieved higher F1-scores in two out of
three datasets compared to LVLM-cot and ZSVCIP [29].
Especially in VISPR, images are labeled as private if any
private attribute is present, meaning that even those con-
taining only a human face tend to be classified as private.
Since our study assumes human interaction, this labeling
difference led to lower scores for our method. Additionally,
as shown in Table IV, text-based inference on the CPI
Dataset for each individual indicator resulted in an F1-score
below 0.4 for most indicators, highlighting the difficulty of
recognition. However, NORMS achieved significantly higher
accuracy, even surpassing the F1-score of the indicator-
based approach. Nevertheless, selecting the best indicator
is not straightforward without first reviewing the results.
Furthermore, in the second-phase indicator-based retrieval,
the voting approach resulted in a significantly lower perfor-
mance compared to thresholding. These findings indicate that
CLIP-TIPR (indicator-based) effectively integrates multiple
indicators rather than relying on a single one, enabling stable
and high recognition accuracy.

Regarding processing time evaluation, as shown in Ta-
ble III, methods using LVLM required at least two seconds,
even in the shortest cases, while LVLM-cot, which achieves
higher accuracy, required more computations and took over
three seconds. In contrast, both ZSVCIP [29] and CLIP-
TIPR (text-based) demonstrated significantly lower process-
ing latency than CLIP-TIPR (indicator-based). However, all

2https://huggingface.co/openai/{clip-vit-base-patch32,clip-vit-base-
patch16,clip-vit-large-patch14}
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TABLE III
COMPARISON OF QUANTITATIVE EVALUATION RESULTS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD AND THE SECOND BEST IN UNDERLINE.

Method Reference text macro F1-score ↑ Process Time (s) ↓
CPI Dataset PrivacyAlert VISPR

ZSVCIP [29] LPT Dataset (binary) 0.500 0.543 0.525 0.059
CLIP-TIPR (text-based) Single Abstract Indicator 0.440 0.577 0.306 0.058
CLIP-TIPR (indicator-based) LPT Dataset 0.680 0.582 0.461 0.074
LVLM-simple - 0.417 0.249 0.437 2.040
LVLM-cot - 0.644 0.706 0.415 3.198

TABLE IV
ABLATION RESULTS FOR DIFFERENT METHODS ON THE LPT DATASET

Method Indicator CPI Dataset

CLIP-TIPR (text-based)

EMO 0.355
VULN 0.376
CONF 0.343
NORMS 0.694
REP 0.385
OA 0.626

CLIP-TIPR (indicator-based, Voting) ALL 0.554
CLIP-TIPR (indicator-based, Thresholding) ALL 0.680

methods completed processing in under 0.1 seconds. These
results indicate that the proposed method enables low-latency
privacy recognition.

C. User Study on Privacy-Aware Robot Behavior

1) Experimental Setup: In this study, we evaluated both
the performance of a recognition model trained on an image
privacy dataset and its effectiveness when integrated into
the humanoid robot CommU. To this end, we conducted an
experiment involving 20 male participants in their twenties.
The evaluation targeted behaviors previously identified as un-
comfortable when photographed, namely changing clothes,
viewing a PC or smartphone screen, and yawning. Each
participant enacted a scenario corresponding to one of these
behaviors for approximately 30 seconds.

The robot’s responses were assessed based on three cri-
teria: 1) the accuracy of gaze aversion, 2) the accuracy of
gaze maintenance, and 3) the immediacy of response. The
two accuracy metrics were rated on a five-point Likert scale
from 1 (low) to 5 (high), with their harmonic mean serving
as the overall evaluation metric. Immediacy was similarly
rated on a five-point scale, with a score of 0 assigned if the
robot continuously averted its gaze or failed to respond.

For comparative analysis, we examined four methods: a
text-based approach trained using a single abstract indicator,
the proposed indicator-based method, LVLM-cot alone, and
a hybrid approach in which the proposed method initially
identifies privacy-sensitive situations, followed by final ver-
ification via LVLM. This study is predicated on the notion
that human responses can be classified into two types: spinal
reflexes that bypass the cerebrum and conscious responses
involving cognitive processing. The latter category can be
further subdivided into immediate intuitive judgments and
deliberative decisions. To approximate human-like behavior,

we employed our proposed method for faster recognition
while leveraging LVLM, which is computationally slower
but may be effective in deliberative scenarios. In this hybrid
approach, LVLM is used only after the proposed method
identifies an image as private, allowing for a more efficient
decision-making process.

2) System Evaluation and User Feedback: The evaluation
results of this study indicate that the proposed method, as
well as its combination with LVLM-cot, received the highest
ratings among the evaluation items and exhibited consistent
trends across all evaluation metrics (Figure 4). Regarding the
text-based method, while it demonstrated a high accuracy
in not averting gaze (True Negative Rate, TN Rate), its
accuracy in averting gaze (True Positive Rate, TP Rate)
was low. Consequently, the harmonic mean of these rates
fell below 3, leading to an overall negative evaluation. As
with the previous case, LVLM-cot alone also tended to have
a higher TN Rate than TP Rate, with its harmonic mean
reaching 3.2, resulting in a relatively positive evaluation. Its
reaction immediacy rating was only 1.8, strongly suggesting
that participants found it noticeably slow to respond.

On the other hand, the proposed method achieved a
significantly higher rate of gaze aversion, with a harmonic
mean of 3.3, compared to the text-based method in a t-test
(p < 0.01). Additionally, its responsiveness rating exceeded
3.5, demonstrating a clear improvement over LVLM-cot (p
< 0.01), indicating that participants perceived it as more
responsive.

No significant differences were observed between the pro-
posed method and its combination with LVLM in the present
evaluation. Similarly, qualitative feedback in the open-ended
responses did not highlight any notable advantages of their
combination. While this difference was not evident in the
current evaluation, using alternative evaluation criteria might
yield further insights.

Additionally, in a post-experiment survey, participants
were asked to rate, on a five-point scale, whether they felt
their privacy was protected by the robot’s ability to suspend
recording in response to human movements. The results
showed that over 95% of participants rated their experience
as 4 or higher, indicating that the proposed method is also
effective from a privacy protection perspective.

VI. CONCLUSIONS

We propose a framework for a humanoid robot to exhibit
privacy-aware behavior using an image privacy recognition
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Fig. 4. User Feedback Results: Our indicator-based method and its
combination with LVLM-cot received high ratings in terms of action
accuracy and reaction immediacy.

model. The robot exhibited privacy-aware behavior, such as
looking away when a human engages in actions they prefer
not to be observed by others. To achieve this, we introduced
a low-latency privacy-aware method that eliminates the need
for ethically sensitive image privacy datasets.

We incorporated CLIP-TIPR, a retrieval-based model de-
signed to operate solely on textual data, as the robot’s im-
age privacy recognition. While CLIP-TIPR enables privacy-
aware behavior, integrating it with an LVLM could help
the robot balance reflexive responses with deliberate privacy
considerations, making its behavior more human-like.

Since privacy perception varies not only across different
time periods but also individuals, developing a personalized
privacy awareness model tailored to each user is desirable.
This requires constructing an interactive learning mechanism
that adapts to individual user preferences over time.
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agement Tools, Sensing and Computing Technologies, and Visual
Perception and Environment Mapping Algorithms in the Internet of
Robotic Things,” Electronics, vol. 12, no. 1, p. 22, 2022.

[12] H. Liu and L. Wang, “Gesture Recognition for Human-Robot Collab-
oration: A Review Author Links Open Overlay Panel,” International
Journal of Industrial Ergonomics, vol. 68, pp. 355–367, 2018.

[13] T. Zhang and H. Mo, “Reinforcement Learning for Robot Research:
A Comprehensive Review and Open Issues,” International Journal of
Advanced Robotic Systems, vol. 18, no. 3, 2021.

[14] S. Noguchi, Y. Nakamura, and Y. Okadome, “Development of a
Attentive Listening Robot Using the Motion Prediction Based on
Surrogate Data,” HCI International 2024 Posters, pp. 387–394, 2024.

[15] D. Tanneberg, F. Ocker, S. Hasler, J. Deigmoeller, A. Belardinelli,
C. Wang, H. Wersing, B. Sendhoff, and M. Gienger, “To Help or
Not to Help: LLM-based Attentive Support for Human-Robot Group
Interactions,” arXiv preprint, arXiv:2403.12533, 2024.

[16] R. Wullenkord and F. Eyssel, “Societal and Ethical Issues in HRI,”
Current Robotics Reports, vol. 1, no. 3, pp. 85–96, 2020.

[17] Y. Zong, O. Bohdal, T. Yu, Y. Yang, and T. Hospedales, “Safety Fine-
Tuning at (Almost) No Cost: A Baseline for Vision Large Language
Models,” arXiv preprint arXiv:2402.02207, 2024.

[18] G. Zhang, B. Liu, T. Zhu, A. Zhou, and W. Zhou, “Visual Privacy
Attacks and Defenses in Deep Learning: A Survey,” Artificial Intelli-
gence Review, vol. 55, no. 6, pp. 4347–4401, 2022.

[19] A. Xu, Z. Zhou, K. Miyazaki, R. Yoshikawa, S. Hosio, and K. Yatani,
“DIPA2: An Image Dataset with Cross-cultural Privacy Perception
Annotations,” in Proc. ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 7, no. 4, 2024, pp. 1–30.

[20] L. Samson, N. Barazani, S. Ghebreab, and Y. M. Asano, “Privacy-
Aware Visual Language Models,” arXiv preprint arXiv:2405.17423,
2024.
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